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OVERVIEW

Timeline

◼ PACE start: FY 2019 Q3 (April 2019)

◼ PACE end: FY 2023 Q4 (September 2023)

◼ ≈ 25% Complete

Barriers

◼ Addressing PACE Major Outcomes 4,5,6,7,8

◼ Lack of predictive models for conventional and non-

conventional ignition processes in engines

◼ Limited understanding of advanced ignition 

mechanisms that enable high-efficiency engines

Partners**

◼ PACE: Ignition Experiments (Ekoto, ACE141), Kinetics 

(Wagnon, ACE139 and Whitesides, ACE140), Cold-start 

(Curran, ACE149), Combustion (Ameen, ACE146) 

◼ Convergent Science, Esgee Technologies

◼ Tenneco, Transient Plasma Systems (TPS)

◼ Michigan Tech, U-Texas, U-Perugia, Auburn, Purdue

◼ FCA Group (2-yrs CRADA with DOE/ANL)

Budget*

◼ Funding in FY19: $400k

$400k (PI: Scarcelli, C.02.04)

◼ Funding in FY20: $875k

$300k (PI: Scarcelli, C.02.04)

$100k (PI: Scarcelli, C.02.04, FCA-CRADA)

$100k (PI: Chen, C.02.01)

$100k (PI: Nguyen C.02.03)

$275k (PI: Yellapantula C.02.02)

* As a reference for task numbers and PIs, Reviewers can check the attached ‘Complete PACE Budget’ slide

** PACE is a DOE-funded consortium of six National Laboratories working towards a common goal (ACE138). Goals and work 

plan are developed considering input from stakeholders including DOE, ACEC Tech Team, CFD code developers, and more.
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RELEVANCE/OBJECTIVES

◼ Conventional spark-ignition (SI)
‒ Several models available, tied to combustion/turbulence model of choice.

‒ Scarce validation at challenging operation (boosted high-load, lean/dilute).

‒ Unidentified issues at specific operation of interest to industry (e.g. cold-start).

‒ Missing components (electrical discharge, strikes/restrikes, conjugate heat transfer, 

radiative heat losses, plasma properties, etc.) negatively affect the model predictivity.

◼ Advanced ignition systems
‒ Spark-based systems (e.g. Pre-chamber, PC):

o Leverage progress on SI. Additional complexities from unique challenges for PC.

o Not purely an ignition modeling problem (the combustion model is also crucial).

‒ Alternative systems (e.g. low-temperature plasma, LTP):
o No dedicated models offered by CFD tools. Simplistic energy/species deposition used.

o Complex LTP chemistry, resulting in mechanism size not affordable for CFD calculations.

o Additional complexity from lack of fundamental experiments. Model validation is challenging.

The development of predictive ignition models is needed by Industry, 

and can leverage fast-growing high-performance computing resources

Image: MTU

acs121_yun_2018_o.pdf

ace087_bunce_2015_o.pdf

Overall Relevance of PACE: PACE combines unique experiments with world-class DOE computing and machine learning expertise to speed discovery 

of knowledge, improve engine design tools, and enable market-competitive powertrain solutions with potential for best-in-class lifecycle emissions.
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PACE MAJOR OUTCOMES

4. High-load ignition models

5. Lean/dilute ignition models

8. Cold-start ignition models

6. Advanced Igniters

7. SI/ACI controls

APPROACH

Predictive 

Ignition Model

Plasma modeling 

(ANL)

Experiments and DNS of kernel growth 

(SNL)

LES/RANS sub-models

(NREL, SNL, ANL)

Combustion and Kinetics

CONVENTIONAL 

SI

ADVANCED IGNITION SYSTEMS
DNS: Direct Numerical Simulations

LES: Large Eddy Simulations

RANS: Reynolds-Averaged Navier-Stokes

ACI: Advanced Compression Ignition
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MILESTONES

Date PI Milestone Status

FY19 Q3 Scarcelli
Validate LTP simulations from advanced LTP ignition technologies (i.e. TPI, GBDI, RF Corona) 

against experiments
100% Complete

FY20 Q2 Scarcelli Expand ignition models to improve CFD predictions at dilute engine operation 50% Complete

FY20 Q2 Yellapantula Assess ability of ML-based models to capture spatially filtered DNS heat release rates 90% Complete

FY20 Q2 Nguyen Multi-zone CFD model analysis of early-state ignition Delayed to Q4FY20

FY20 Q3 Chen Perform DNS of turbulent kernel evolution with EGR dilution On track

FY20 Q4 Scarcelli Simulate the impact of advanced ignition concepts on ACI operation in CFD simulations Rescheduled in FY21-23

FY20 Q4 Scarcelli Model ignition at cold-start conditions using conventional computational methods On track

FY20 Q4 Yellapantula Evaluate turbulent-chemistry interaction model prediction against imaged spark kernels On track

FY20 Q4 Nguyen Mine statistics from comparable DNS to identify relevant early flame kernel model features On track

FY20 Q4 Chen Provide framework for extracting statistics from DNS for model development On track

TPI: Transient Plasma Ignition

GBDI: Groundless Barrier Discharge Ignition

RF: Radio-Frequency
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ACCOMPLISHMENTS FY20

Ignition modeling tools (plasma, CFD, kinetics) improved and expanded

VizSpark

VizGlow/CONVERGE CFD

◼ ANL/EsGee Technologies long-established 

collaboration led to VizGlow improvements.

◼ LTP ignition model in CONVERGE expanded:

‒ UDF source terms from VizGlow/Bolsig+

‒ Output from VizGlow taken as input to 

CONVERGE and vice versa (on-going) 

VizSpark/CONVERGE CFD

◼ Introduced high-fidelity SI modeling using 

VizSpark to evaluate plasma properties, 

spark stretch, blowouts, and re-strikes. 

◼ ANL/EsGee Technologies new 

collaboration on 1-way coupling of 

VizSpark and CONVERGE (on-going).

O-D/1-D kinetics

◼ O-D modeling of impact of radicals 

on auto-ignition processes showed 

the importance of ozone (O3).

◼ 1-D modeling of impact of radicals 

on flame propagation and kernel 

radius evaluated for different fuels 

(Le number effects).

Expanded Mechanisms

◼ Simplified O3 kinetics added to the 

plasma mechanism used in VizGlow.

◼ Shown good agreement with SNL 

experiments (GBDI) for [O3]:

Simulations Experiments

O3 = 3.13 ppm O3 = 3.75 ppm

(PI: Scarcelli, C.02.04)
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ACCOMPLISHMENTS FY20

Improved characterization of discharge-to-plasma simulations
◼ Previously simplified boundary conditions required 

extensive tuning of the model to match experiments. 

◼ Improved circuit calculations take transmission line 

losses into account.

◼ Circuit modeling calibrated with SNL experiments using 

the open source code Screamer. Collaboration with 

TPS under the HPC4Mfg program.

◼ Raw Voltage/Current data from SNL experiments was 

post-processed to obtain realistic values of:

‒ Connection Voltage → VizGlow

‒ Connection Current → VizSpark

‒ Power dissipated into the gas → CONVERGE

‒ Energy deposited into the gas → Cantera (0-D 

equilibrium calculations)

Raw data from 

experiments 

(Ekoto, SNL)

Postprocessed 

data to the 

plasma model

(PI: Scarcelli, C.02.04)
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ACCOMPLISHMENTS FY20

RF corona plasma simulated and validated against experiments

◼ Collaborative effort between ANL, U-Perugia, and Tenneco.

◼ Non-equilibrium plasma simulations using VizGlow

captured the rapid succession of positive and negative 

streamers from a high-voltage RF discharge.

◼ Peak values in the range of [O] = 5,000-20,000 ppm and 

TemperatureBULK = 1500-3000 K, based on the operating 

conditions (VMAX = 13.5-19 kV, Pressure = 3.25-5.5 bar).

◼ Case shown in this slide: 13.5 kV and 3.25bar

◼ Experimental trends at different 

VMAX/Pressure ratios were captured.

◼ Quasi-steady streamer penetration 

was reached within 10-15 cycles and  

matched optical data from U-Perugia.

Milestone: Modeling capabilities developed for LTP advanced igniters (TPI*, GBDI*, Corona) 

* ace084_scarcelli_2019_o.pdf

1 mm

4 mm

(PI: Scarcelli, C.02.04)

Image from U-Perugia
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ACCOMPLISHMENTS FY20

Engineering-level TPI model for CFD solvers developed

Pin-to-pin 2-pulse LTP ignition of propane/air mixture (Ekoto, SNL)

◼ Objective: canonical geometry and designed experiments (ignition with low 

number of pulses) are suitable for initial validation of the LTP ignition CFD model.

◼ 3.4 mm gap, p = 1.3 bar, T = 343 K, f = 1.0, 20 ns pulse, 300 ms dwell time.

◼ Dissipated power from VizGlow fed into Bolsig+ to identify elastic/inelastic 

collision ratio. Calculated heat/species sourced in CONVERGE via UDFs.

◼ Flexible approach to tune thermal/chemical ratio for multiple pulses.

◼ CONVERGE LES + multi-zone finite rate chemistry.

◼ 1st pulse deposition does not heat up the gas.

◼ 2nd pulse deposition heats up the plasma due to 

larger elastic component.

◼ Removes previous assumption (i.e. same 

energy/species deposition at each pulse).

◼ Qualitatively captures 2nd pulse ignition.

◼ Pending validation with new dataset (methane).

Schlieren images from Ekoto, SNL

1st discharge 2nd discharge

UDFs: User Defined Functions

(PI: Scarcelli, C.02.04)
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ACCOMPLISHMENTS FY20

SI kernel growth simulated with CFD and compared with experiments

Pin-to-pin spark in methane/air mixture (Ekoto, SNL)

◼ Objective: designed experiments to decouple the spark-

induced kernel growth from the electrical discharge.

◼ High-voltage nano-pulse (20 ns) resulting into a spark.

◼ Experiments at engine-like density: 5bar, 343 K.

◼ VizSpark for discharge-to-plasma simulations. Switched 

to CONVERGE after 50 ns for combustion calculations.

CONVERGE CFD results compared to Schlieren from SNL 

◼ LES dynamic structure with multi-zone finite rate chemistry.

◼ GRI-mech 3.0, Minimum mesh size 25 mm (AMR and embedding).

◼ VizSpark delivers spark-channel formation, shape, and size.

◼ Kernel initialization: plasma-chemical equilibrium approach.

◼ Energy and plasma volume used to compute chemical equilibrium. 

◼ LESI model not needed for quiescent conditions.

Schlieren images from Ekoto, SNL

Post-processed data to VizSpark VizSpark output (t = 50 ns)

AMR: Adaptive Mesh Refinement, LESI: Lagrangian-Eulerian Spark-Ignition

(PI: Scarcelli, C.02.04)
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ACCOMPLISHMENTS FY20

SI CFD model evaluated at varying operating conditions

Stoichiometric condition (f = 1.0)

◼ Standard energy deposition approach failed, due to 

temperature values exceeding the limit (≥ 95,000 K).

◼ Equilibrium calculation delivered reasonable Temp values.

◼ Initial expansion of the flame kernel well described by CFD 

simulations with respect to experiments.

◼ Accurate energy value (4 mJ) crucial to match expansion.

Lean condition (f = 0.6)

◼ Initial expansion of the flame kernel well described by CFD 

simulations with respect to experiments.

◼ CFD failed to predict successful ignition:

‒ Minimum impact of heat transfer

‒ Uncertainties in f measurements under evaluation

‒ Quenching due to flame shredding or low reactivity?

Introduce DNS to investigate flame kernel growth and develop LES sub-models

Schlieren images from Ekoto, SNL

Schlieren images from Ekoto, SNL

(PI: Scarcelli, C.02.04)
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Flame surface evolution;  Blue: local extinction; Red: burning.

Case C 

Ka=260

Case D 

Ka=120

Curvature flame stretch. Local extinction Flame shredding

Destruction of burnt volume

Negative flame stretch. Strong burning 

DNS of turbulent flame kernels provided for ML model training

◼ Jet A at f = 0.7-1.0, Ka = 120-260, Ret = 2500.

◼ Parametric variation with kernel size and equivalence ratio.

◼ Cases A, B, C global extinction. Case D marginal.

◼ Extinction mechanisms identified as:

‒ the attenuation of local HRR due to flame stretch

‒ the cut-off and destruction of burnt volume due to 

turbulence

◼ Dataset used by NREL for the ML-based manifold model.

ACCOMPLISHMENTS FY20

ML: Machine-Learning, HRR: Heat Release Rate

(PI: Chen, C.02.01)



13

◼ DNS evolution of a thermal ignition flame kernel 

ejected from a sunken aerospace ignitor into a 

quiescent methane-air mixture (Georgia Tech rig).

◼ Initial kernel parameters from Stanford University 

(Matthias Ihme) for a high-altitude relight case.

◼ PeleC with AMR (3 levels of refinement near kernel).

◼ Stoichiometric to lean mixture range covered. 

◼ DRM-19 mech used for methane.

◼ Onset of ignition at very lean conditions, partially at 

leading edge and ‘at the side’ of the kernel.

◼ Vortex traps OH, cool air is recirculated, flame can’t 

be sustained at the leading edge. Later on the fuel is 

recirculated and mixes with kernel leading to ignition.

Preliminary DNS of plasma post discharge flame kernel evolution

ACCOMPLISHMENTS FY20
(PI: Chen, C.02.01)
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◼ Reduced-order manifold approach for reaction rate and 

turbulence/chemistry interaction closure in LES:

ሶ𝝎 𝒀, 𝑒, 𝜌 = 𝑮(𝝃, 𝑒, 𝜌) where   𝑁𝜉 ≪ 𝑁𝑌

◼ Novel neural network structure developed to 

simultaneously optimize both the manifold definition (𝝃) 

and the nonlinear mapping to the model outputs (𝑮), 

unlike other modeling approaches.

◼ Model trained using the SNL Jet-A DNS and data from 

simple 1D and 2D calculations.

◼ Prediction error for reaction rates and heat release 

reduced relative to state-of-the-art physical and data-

based models, e.g. Principal Component Analysis (PCA).

◼ Will lead to more accurate overall prediction of ignition 

when model is integrated into LES solvers.

◼ Training with filtered heat release rate data in progress.

ML-based reduced-order manifold model developed

Milestone: ML-based models captured spatially filtered DNS heat release rates

ACCOMPLISHMENTS FY20
(PI: Yellapantula, C.02.02)



15

ACCOMPLISHMENTS FY20

Prediction of χC from ML based model 

compared against filtered DNS

◼ PDR, 𝛘C is a key modeling component of premixed turbulent 

combustion models. It provides information about the interplay 

between turbulent and flame time scales.

◼ Developed a Deep Neural Network (DNN) based LES model for 

𝛘C using filtered DNS data from n-heptane flames (Caltech).

◼ Training data spanned varying turbulence levels and flame 

thickness leading to a range of Karlovitz numbers.

◼ In a-priori analysis model showing great promise and providing 

significant improvement over current state-of-art models.

◼ Model designed to predict:

a. 𝛘C in flames with fuels ranging from H2 to long chain 

hydrocarbons such Dodecane (C12H26)

b. Karlovitz numbers (Ka) ranging from 0.5 to 256

ML-based model developed for progress variable dissipation rate (PDR) 

Milestone: ML-based models captured spatially filtered DNS heat release rates

Ka = 256 

Ka = 7 

(PI: Yellapantula, C.02.02)
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◼ Simulation of a pre-burn event for soot wall film experiment in the Sandia 

constant volume chamber at quiescent condition.

◼ Volumetric composition: 3.2 % C2H2, 0.5% H, 8.25 % O2, 88.05 % N2.

◼ CONVERGE SAGE solver (finite rate chemistry with multi-zone):

‒ 73-species C2H2 mechanism. Captures differential diffusion effects 

◼ 3 consecutive sparks with 80 mJ total energy, 12.5 ms total duration.

◼ Flame stabilized after 15 ms, captures propagation within the first 100 ms.

◼ Flame merging after 125 ms causes divergence in pressure trace agreement.

◼ Future focus on early flame kernel evolution and merging mechanism:

‒ Scalar mixing across the flame and turbulent flame speed

‒ G-equation as an effective model compared to multi-zone finite rate 

‒ Iso-octane and gasoline surrogate simulation to follow

ACCOMPLISHMENTS FY20

Flames 
merging

Preliminary evaluation of flame kernel merging mechanisms

(PI: Nguyen, C.02.03)
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RESPONSE TO REVIEWER COMMENTS

C.02.04 was the only task reviewed in 

FY19 (Ref. ACE084, Scarcelli, 2019) 

RE-SCOPE PROJECT TO BE MORE COMPREHENSIVE AND EFFICIENT
• The reviewer wanted to see the geometry and conditions (engine speed and loads) that will be modeled and further 

stated that practical engine conditions (including high load) are important for industrial applications.

• The focus of the current project is very broad, possibly too broad. The project considers three modes of ignition—

traditional spark ignition (SI), low-temperature plasma (LTP), and pre-chamber (PC) jet ignition.

✓ ‘High-fidelity’ SI modeling is the main focus. LTP and PC ‘engineering’ models are also needed. 

THE COMPLEXITY OF PLASMA CHEMISTRY
• Plasma predictive chemistry is heavily lacking; thus, this area needs much attention.

• Collaboration with Lawrence Livermore National Laboratory (LLNL) will be good for integrating with neutral chemistry, 

but there is a lot of expertise in the academic community for plasmas that should be leveraged more heavily.

✓ Collaboration planned within PACE (LLNL) and outside of PACE (Auburn/U-Texas).

TAILORED EXPERIMENTS AND/OR DNS
• Ask if the project team could experimentally reduce some of this uncertainty with a cleverly designed experiment.

• Additional experimental data in terms of whether actually a shockwave is seen, e.g., schlieren. Additional non-intrusive 

temperature and species field data using optical diagnostics may be helpful in VizGlow model validation

• Wherever experimental data cannot be acquired, the reviewer recommended investigating whether direct numerical 

simulations (DNS) will yield any data that can be used for VizGlow validation.

✓ Experiments on ignition being tailored on modeling activities. DNS is now part of our approach.

MORE EFFORT HIGH-FIDELITY CALCULATIONS
• It would be nice to have seen some preliminary comparisons with LES at the Annual Merit Review (AMR).

• Too premature to use detailed CONVERGE simulations at this point. Perhaps only LES in CONVERGE may allude to 

some results (less diffusion).

✓ CONVERGE simulations are now being performed using LES.
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COLLABORATION AND COORDINATION

EXTERNAL COLLABORATORS

Convergent Science (CSI) – CFD model development

Esgee Technologies – plasma model development

Tenneco, Transient Plasma Systems (TPS) – ignition hardware

Michigan Tech, U-Perugia (optical diagnostics), U-Texas, 

Auburn (plasma chemistry), Purdue (combustion modeling)

FCA Group – LESI model development through CRADA

PACE
PACE Ignition Team

Leads: Ekoto, Scarcelli

Scarcelli, Chen, Ekoto,

Yellapantula, Nguyen Rockstroh

Ignition 

Modeling
Kinetics

Ignition 

Experiments

HIGH-LOAD

LEAN/DILUTE

COLD-START

Combustion 

Pitz, 

Wagnon, 

Whitesides

Ameen, 

Chen, 

Som

CONNECTION WITH OTHER DOE PROGRAMS

DOE HPC4Mfg – TPS/ANL, plasma modeling

DOE TCF – CSI/ANL, LESI model in CONVERGE

DOE VTO FT – ANL, Pre-chamber modeling for MD/HD 

NG engines and multi-mode combustion (Co-Optima)

DOE SC ASCR ECP – SNL, Pele AMR DNS code with 

igniter geometry capability

TCF: Technology Commercialization Fund, MD/HD NG: Medium-Duty/Heavy-Duty Natural Gas, ECP: Exa-scale Computing Project 
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REMAINING CHALLENGES AND BARRIERS

◼Predictive ignition modeling serves multiple purposes within PACE

‒ Future milestones ‘weighted’ on priority, state-of-the-art, and computational requirements.

‒ Model limitations well-known at high-load and lean/dilute conditions. Cold-start is unclear.

◼Conventional vs. non-conventional ignition systems

‒ Can afford fundamental-to-applied modeling only for a limited number of ignition concepts.

‒ SI has priority. PC or LTP modeling might just remain at the engineering level in FY21-23.

◼Computational resources for DNS are limited

‒ DNS-based model development can fit into all three main purposes.

‒ High-load conditions will face more severe time constraints due to high turbulence.

◼Will reduced kinetics be reduced enough?

‒ Kinetic mechanisms needed in different sizes. DNS has the largest constraints.

PACE-wide barriers are discussed in ACE138
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PROPOSED FUTURE WORK

◼Multi-Lab effort on predictive Spark-Ignition model development 

‒ Involving all PIs/Tasks. ANL also involved in CRADA with FCA (LESI model development)

‒ 3-pronged approach: plasma discharge → DNS of kernel → flame growth sub-models

‒ Specific purposes subsequently targeted, based on readiness and challenges:

o Lean/Dilute: FY20-FY21

o Cold-Start: FY21-FY22

o High-Load: FY21-FY23

◼Develop engineering CFD models for advanced ignition systems

‒ ANL will continue to develop and improve ‘engineering-level’ CFD models for PC/LTP

o PC will surely leverage advances in SI modeling and combustion modeling

o LTP will take longer due to complex plasma discharge-to-kernel kinetics

‒ Impact of advanced ignition on cold-start and ACI COV stability evaluated in FY22 and FY23

Any proposed future work is subject to change based on funding levels

COV: Coefficient of Variation
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SUMMARY

Relevance

◼ This project addresses the lack of predictive models for conventional 

and non-conventional ignition processes and limited understanding of 

advanced ignition mechanisms for high-efficiency engines

Approach

◼ Three-pronged approach consisting of high-fidelity plasma modeling, 

DNS/experiments of flame kernel initiation and growth, and physics-

based or ML-based LES ignition sub-model development

FY20 technical accomplishments (1/2)

◼ Ignition modeling tools (plasma, CFD, kinetics) improved and expanded

◼ Improved characterization of discharge-to-plasma simulations

◼ RF corona plasma simulated and validated against experiments

◼ Engineering-level TPI model for CFD solvers developed

◼ SI kernel growth simulated with CFD and compared with experiments

◼ SI CFD model evaluated at varying operating conditions

FY20 technical accomplishments (2/2)

◼ DNS of turbulent flame kernels provided for ML model training

◼ Preliminary DNS of plasma post discharge flame kernel evolution

◼ ML-based reduced-order manifold model developed

◼ ML-based model developed for progress variable dissipation rate

◼ Preliminary evaluation of flame kernel merging mechanisms

Remaining barriers

◼ Broad ignition work target identified by multiple purposes in PACE

◼ Focus on conventional vs. non-conventional ignition systems

◼ Computational resources required for DNS and size of mechanisms 

to be used by DNS and engineering-level CFD models

Future work

◼ Multi-Lab effort on predictive spark-ignition model development

‒ Addressing lean/dilute, cold-start, and high-load ignition 

◼ Develop engineering CFD models for advanced ignition systems

Development and Validation of Simulation Tools for Advanced Ignition Systems
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TECHNICAL BACKUP SLIDES



23

TECHNICAL BACKUP SLIDES

LTP ignition simulation setup

CONVERGE CFD
CFD software for engine simulation

• Turbulence: LES Dynamic Structure

• Chemistry: Reduced mechanism 

from USC (propane)

• Grid control: 

• Base size: 2 mm 

• Embedding: 125 μm

• AMR: 125 μm

• BCs: fixed wall temperature

VizGlow
Self-consistent non-equilibrium plasma solver 

that describes streamer discharge:

• 2D axisymmetric. 10 μm min mesh size 

• Chemistry: air-plasma Zhang et al., 2018

• Gas: pure air at 343 K, 1.3 bar

• BCs: Voltage profile from post-processed 

experimental data imposed to the anode

• 1-pulse simulation conducted; 2nd pulse 

fields based on the assumption that a 

plasma kernel of density 1018 1/m3 exists.

Step 1:

VizGlow

discharge 

simulation 

t~100ns

Step 2:

Power 

deposited for 

each domain 

cell

Step 3:

Bolsig+ calculations 

of  elastic (heat) and 

inelastic (radicals) 

collisions

Step 4:

Source terms for 

governing 

equations in 

CONVERGE via 

UDFs

BCs: Boundary Conditions

(PI: Scarcelli, C.02.04)

https://iopscience.iop.org/article/10.1088/1361-6463/aad262/meta
http://www.bolsig.laplace.univ-tlse.fr/


24

TECHNICAL BACKUP SLIDES

VizSpark
Self-consistent equilibrium plasma 

solver that describes the evolution 

of spark-ignition processes 

• 2D axisymmetric solution

• Min mesh size: 5 μm

• Chemistry: air-plasma 

• Gas: pure air at 343 K, 5 bar

• BCs: Current density profile from 

post-processed experimental 

data is imposed to the cathode

5 μm (quad)

(tri)

gap: 1.01 mm

(tri)

A

C

CONVERGE CFD
CFD software for engine simulation

• Turbulence: LES Dynamic Structure

• Chemistry: GRI-Mech 3.0 (methane)

• Grid control: Base size: 1.6 mm. 

Embedding: 25 μm, AMR: 25 μm

• BCs: fixed wall temperature

• CHT calculations not needed due to 

short spark duration and toroidal 

kernel shape growth

Step 1: 

Obtain plasma channel thickness from VizSpark

Step 2: 

Equilibrate air by maximizing entropy isochorically 

with given measured energy and plasma volume

Step 3: 

Equilibrate fuel-air mixture by minimizing Gibbs 

free energy isobarically

Spark plasma and ignition kernel growth simulation setup

Step 4: 

Initialize equilibrated 𝑇, 𝑃, 𝑌𝑖 in CONVERGE

Methodology Description

Standard ED Sourcing the measured power [J/s] along a cylindrical volume between gap*

Plasma-chemical 

equilibrium

Initializing the equilibrated temperature, pressure, species mass fractions along 

a cylindrical volume between gap**

- Temperature: ~25,700 K; Pressure: ~990 bar

- Species mass fraction (for phi=0.6 case): 

* estimation

** cylinder diameter from VizSpark simulation

N 0.739 O 0.224 C 0.025 H 0.008

N2 0.002 O2 4.1e-5 CO 5.0e-5 H2 3.2e-6

NO 0.001 OH 7.1e-5 CO2 5.9e-9 H2O 1.1e-19

CH4 2.9e-8 HO2 1.0e-16

CHT: Conjugate Heat Transfer

(PI: Scarcelli, C.02.04)
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TECHNICAL BACKUP SLIDES

ANL tools: details and references

Fl
u

sh
 a

n
o

d
e 

ti
p

11 mm

Alumina 
insulator

Simulations Experiments

1 pulse X
O3

= 3.13 ppm X
O3

= 3.75 ppm 

2 pulses X
O3

= 8.87 ppm X
O3

= 7.51 ppm 

ASSUMPTIONS FOR OZONE GBDI CALCULATIONS

• Simulations run VIZGLOW on two-pulses in 

rapid succession without dwell time

• Experiments performed at SNL divided total 

ozone generation (on 10 pulses) by 10

• Circuit modeling conducted via Screamer.

• Ozone mechanism used for ignition and propagation 

studies: Ombrello et al. "Flame propagation 

enhancement by plasma excitation of oxygen"

• Propane mechanism used for flame propagation: 

Kennel et al. "Reduced kinetic mechanisms for 

premixed propane-air flames"

• Propane mechanism used for ignition studies: 

Reduced USC Mech: Website

• Flame propagation conducted with Basilisk and 

Cantera routines

• Simplified Ozone mechanism used in VizGlow GBDI 

calculations: Depcik et al.: Website

‒ O + O2 + M ↔ O3 + M 

‒ O3 + O ↔ 2 O2

(PI: Scarcelli, C.02.04)

https://www.isu.edu/iac/research/screamer/
https://www.sciencedirect.com/science/article/abs/pii/S0010218010000350?via%3Dihub
https://link.springer.com/chapter/10.1007%2F978-3-540-47543-9_8
http://ignis.usc.edu/Mechanisms/USC-Mech%20II/USC_Mech%20II.htm
http://basilisk.fr/
https://cantera.org/index.html
https://depcik.ku.edu/?q=kinetics
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◼ Onset of ignition at very lean conditions, partially at 

leading edge and ‘at the side’ of the kernel

◼ Vortex traps OH, cool air is recirculated, flame can’t 

be sustained at the leading edge. Later on the fuel is 

recirculated and mixes with kernel leading to ignition

DNS of plasma post discharge flame kernel evolution

TECHNICAL BACKUP SLIDES
(PI: Chen, C.02.01)
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TECHNICAL BACKUP SLIDES

• A key challenge for all LES models is closure of the filtered reaction rates (෩ሶ𝜔𝑘) based on 

filtered thermochemical state variables

o Reduced-Order Manifold Models: solve for reaction rates based on the progress 

variable (e.g., C = YCO2 + YCO + YH2O + YH2), rather than all species individually

• Deep neural networks (DNNs) efficiently represent complex nonlinear relationships 

• Two approaches for integrating DNNs to leverage DNS and experimental data to accurately 

predict the impact of turbulence on the filtered reaction rates:

Progress Variable Manifold w/ DNN Sub-model

• Progress variable dissipation rate (𝜒𝐶) is a key model 

parameter that indicates the turbulence intensity and 

effect on combustion

• A DNN model for this quantity can improve accuracy 

over phenomenologically derived approaches

Machine Learned Manifold

• Use a specifically designed neural network 

structure to learn new manifold variables rather 

than using the same progress variable

• This approach gives both the functional form of 

the model for ෩ሶ𝜔𝑘 and the inputs to the model

Objective: Improved kernel-to-flame transition model that accounts for plasma energy deposition, 

hydrodynamic instabilities, turbulence, convective strain, electrode heat transfer, and fuel Lewis number

Machine Learning (ML) models - Technical approach

(PI: Yellapantula, C.02.02)


